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Overall Solution
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1 MIL: multi-instance learning.

Final LB: 0.9286
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Data Cleaning
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• Removal of Pen Marks by akensert

• Suspicious Slides by Zac Dannelly

• Duplicate Slides by Appian

No cancerous tissue but ISUP Grade > 0 85
Blank Slides 5

*65be0 *af93e

Original Pen Marks 
Removed

https://www.kaggle.com/akensert/panda-removal-of-pen-marks
https://www.kaggle.com/c/prostate-cancer-grade-assessment/discussion/151323
https://www.kaggle.com/appian/panda-imagehash-to-detect-duplicate-images
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Data Pre-Processing
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Multi-resolution MIL
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Extracted tiles at 5x
k ×256×256
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MLP
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Tile selection
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MLP
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CNN features extractor

Visualization of the attention map

First screening stage

Second grading stage

CNN features extractorSelected tiles at 10x
k′ ×256×256

Whole slide image

ISUP 
Grade

Li, J., Li, W., Gertych, A., Knudsen, B. S., Speier, W., & Arnold, C. W. (2019). An 
attention-based multi-resolution model for prostate whole slide image 
classification and localization. CVPR Workshops (2019).
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Tile Selection of Multi-reso MIL
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LGBM & XGBoost
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Threshold Finetuning
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Pseudo Code of Partial Differentiation Method

def fit(X, y): 
## construct partial differential equation
loss_partial = partial(kappa_loss, X=X, y=y)
## initialize the threshold
initial_coef = [0.5, 1.5, 2.5, 3.5]
## optimize the coefficient by specified method
coef_  = optimize.minimize(loss_partial, initial_coef, method='nelder-mead’)  

• Optimizer of threshold for QWK: Brute force search

• Optimizer of threshold for QWK: Partial differentiation
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Training Details
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• 4-fold Cross Validation:
• Result 4 * 3 (# of models, i.e. MIL, LGBM, XGBoost) = 12 models at 

inference time

• Network Architecture: 
• ResNext 50, EfficientNetB0

• Optimizer: 
• Adam Optimizer with Cosine Annealing Learning Rate Scheduler 

• Loss Function: adopt ordinal regression (binning strategy)
• Label = [0,0,0,0,0] means target 0, label = [1,1,0,0,0] means target 2, 

and label = [1,1,1,1,1] means target 5.
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Performances Comparison

Method Public LB Score Private LB Score
LGBM 0.9135 0.9239
LGBM + XGBoost 0.9121 0.9248
MIL (w/o threshold optimization) 0.9161 0.8968
MIL 0.9018 0.9185
MIL + LGBM + XGBoost (w data source)1 0.9132 0.9262
MIL + LGBM + XGBoost 0.9061 0.9286
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1 “w data source” means we used data source information as input feature.
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Discussions

• Things we have tried:
• Stitching v.s Stacking
• Stain Normalization: Reinhard v.s CycleGAN
• Segmentation
• Multi-task learning with Gleason score
• Multi-resolution input

• Things we think can be improved:
• Noisy samples detection
• Self-supervised pre-training for feature extractor
• Reinforcement learning or RNN for dynamic tile selection
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Stain Normalization 
(CycleGAN)
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https://www.kaggle.com/akensert/panda-removal-of-pen-marks
https://www.kaggle.com/c/prostate-cancer-grade-assessment/discussion/151323
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https://www.kaggle.com/rftexas/better-image-tiles-removing-white-spaces
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https://www.kaggle.com/abhishek/optimizer-for-quadratic-weighted-kappa
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Tile Selection of Multi-reso MIL
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Tile Selection of Multi-reso MIL
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Tile Selection of Multi-reso MIL
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Tile selection

Tile with high attention weights
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Tile Selection of Multi-reso MIL
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Tile selection
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